5400=t+13.5t^2

Simple and best practice solution for 5400=t+13.5t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5400=t+13.5t^2 equation:



5400=t+13.5t^2
We move all terms to the left:
5400-(t+13.5t^2)=0
We get rid of parentheses
-13.5t^2-t+5400=0
We add all the numbers together, and all the variables
-13.5t^2-1t+5400=0
a = -13.5; b = -1; c = +5400;
Δ = b2-4ac
Δ = -12-4·(-13.5)·5400
Δ = 291601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291601}=\sqrt{289*1009}=\sqrt{289}*\sqrt{1009}=17\sqrt{1009}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-17\sqrt{1009}}{2*-13.5}=\frac{1-17\sqrt{1009}}{-27} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+17\sqrt{1009}}{2*-13.5}=\frac{1+17\sqrt{1009}}{-27} $

See similar equations:

| -(y+80)-(y+80)+19=y | | 3(x+2)+2(4x-1)=17 | | x2=9100 | | 0=2x2-8x+8 | | 16/5x=8 | | 3846.5=3.14r^2 | | 4(y-7)=-6-48 | | H=-16t^2+68+ | | 10^x=16 | | 4(8-4)=6(6*x) | | 1.50x=0.75x+12 | | 24x-3+2=24x-4 | | 7^x=10 | | 20k+3k-20k=3 | | 2.25^x=5 | | 3x+2(4x-5)=0 | | 3x+58=5x+42 | | x=3/4(x-1) | | (9x/5)+(8x+15)=180 | | -4v=+5=-3-3v | | r=6.7=1.2 | | 0.03m=12 | | 15n-2=43 | | 2x=10235 | | 10-(7x-2)-1=8 | | I-y=4 | | 3x+17x-1=5(4x+8) | | 17j-15j=14 | | 2(x-2)+3(x+3)=90 | | z+67/5=-1 | | -135+8g=2g | | 17x-2x(3-2)=45 |

Equations solver categories